

PyOtherSide Developer Guide

PyOtherSide is a QML Plugin for Qt 5 and Qt 6 that provides access to a Python 3
interpreter from QML. It was designed with mobile devices in mind, where
high-framerate touch interfaces are common, and where the user usually
interfaces only with one application at a time via a touchscreen. As such, it
is important to never block the UI thread, so that the user can always continue
to use the interface, even when the backend is processing, downloading or
calculating something in the background.

At its core, PyOtherSide is basically a simple layer that converts Qt (QML)
objects to Python objects and vice versa, with focus on asynchronous events
and continuation-passing style function calls.

Qt 6 Support

New in version 1.6.0.

PyOtherSide now supports Qt 6 while retaining source compatibility with Qt 5.

The following restrictions currently apply when using Qt 6:

	PyGLArea is currently broken with Qt 6, use PyFBO instead.

QML API

This section describes the QML API exposed by the PyOtherSide QML Plugin.

Import Versions

The current QML API version of PyOtherSide is 1.5. When new features are
introduced, or behavior is changed, the API version will be bumped and
documented here.

io.thp.pyotherside 1.0

	Initial API release.

io.thp.pyotherside 1.2

	importModule() now behaves like the import statement in Python
for names with dots. This means that importModule('x.y.z', ...) now
works like import x.y.z in Python.

	If a JavaScript exception occurs in the callback passed to
importModule() or call(), the signal error() is emitted
with the exception information (filename, line, message) as traceback.

io.thp.pyotherside 1.3

	addImportPath() now also accepts qrc:/ URLs. This is useful if
your Python files are embedded as Qt Resources, relative to your QML files
(use Qt.resolvedUrl() from the QML file).

io.thp.pyotherside 1.4

	Added getattr()

	call() and call_sync() now accept a Python callable object
for the first parameter (previously, only strings were supported)

	If error() doesn’t have a handler defined, error messages will be
printed to the console as warnings

io.thp.pyotherside 1.5

	Added PyGLArea and PyFBO for OpenGL rendering, see
OpenGL rendering in Python

	Added importNames() and importNames_sync() to mirror
Python’s from foo import bar, baz import mechanism

QML Python Element

The Python element exposes a Python interpreter in a QML file. In
PyOtherSide 1.0, if multiple Python elements are instantiated, they will share
the same underlying Python interpreter, so Python module-global state will be
shared between all Python elements.

To use the Python element in a QML file, you have to import the plugin using:

import io.thp.pyotherside 1.5

Signals

	
received(var data)

	Default event handler for pyotherside.send()
if no other event handler was set.

	
error(string traceback)

	Error handler for errors from Python.

Changed in version 1.4.0: If the error signal is not connected, PyOtherSide will print the
error as QWarning on the console (previously, error messages
were only shown if the signal was connected and printed there).
To avoid printing the error, just define a no-op handler.

Methods

To configure event handlers for events from Python, you can use
the setHandler() method:

	
setHandler(string event, callable callback)

	Set the handler for events sent with pyotherside.send().

Importing modules is then done by optionally adding an import
path and then importing the module asynchronously:

	
addImportPath(string path)

	Add a path to Python’s sys.path.

Changed in version 1.1.0: addImportPath() will automatically strip a leading
file:// from the path, so you can use Qt.resolvedUrl()
without having to manually strip the leading file:// in QML.

Changed in version 1.3.0: Starting with QML API version 1.3 (import io.thp.pyotherside 1.3),
addImportPath() now also accepts qrc:/ URLs. The first time
a qrc:/ path is added, a new import handler will be installed,
which will enable Python to transparently import modules from it.

	
importModule(string name, function callback(success) {})

	Import a Python module.

Changed in version 1.2.0: Previously, this function didn’t work correctly for importing
modules with dots in their name. Starting with the API version 1.2
(import io.thp.pyotherside 1.2), this behavior is now fixed,
and importModule('x.y.z', ...) behaves like import x.y.z.

Changed in version 1.2.0: If a JavaScript exception occurs in the callback, the error()
signal is emitted with traceback containing the exception info
(QML API version 1.2 and newer).

	
importNames(string module, array object_names, function callback(success) {})

	Import a list of names from a given modules, like Python’s
from foo import bar, baz syntax – the equivalent call
would be importNames('module', ['bar', 'baz'], ...);

New in version 1.5.0.

Once modules are imported, Python function can be called on the
imported modules using:

	
call(var func, args=[], function callback(result) {})

	Call the Python function func with args asynchronously.
If args is omitted, func will be called without arguments.
If callback is a callable, it will be called with the Python
function result as single argument when the call has succeeded.

Changed in version 1.2.0: If a JavaScript exception occurs in the callback, the error()
signal is emitted with traceback containing the exception info
(QML API version 1.2 and newer).

Changed in version 1.4.0: func can also be a Python callable object, not just a string.

Attributes on Python objects can be accessed using getattr():

	
getattr(obj, string attr) → var

	Get the attribute attr of the Python object obj.

New in version 1.4.0.

For some of these methods, there also exist synchronous variants, but it is
highly recommended to use the asynchronous variants instead to avoid blocking
the QML UI thread:

	
evaluate(string expr) → var

	Evaluate a Python expression synchronously.

	
importModule_sync(string name) → bool

	Import a Python module. Returns true on success, false otherwise.

	
importNames_sync(string module, array names) → bool

	Import names from a Python modules. Returns true on success, false otherwise.

	
call_sync(var func, var args=[]) → var

	Call a Python function. Returns the return value of the Python function.

Changed in version 1.4.0: func can also be a Python callable object, not just a string.

The following functions allow access to the version of the running PyOtherSide
plugin and Python interpreter.

	
pluginVersion() → string

	Get the version of the PyOtherSide plugin that is currently used.

Note

This is not necessarily the same as the QML API version currently in use.
The QML API version is decided by the QML import statement, so even if
pluginVersion() returns 1.2.0, if the plugin has been imported as
import io.thp.pyotherside 1.0, the API version used would be 1.0.

New in version 1.1.0.

	
pythonVersion() → string

	Get the version of the Python interpreter that is currently used.

New in version 1.1.0.

Changed in version 1.5.0: Previously, pythonVersion() returned the compile-time version of
Python against which PyOtherSide was built. Starting with version 1.5.0,
the run-time version of Python is returned (e.g. PyOtherSide compiled
against Python 3.4.0 and running with Python 3.4.1 returned “3.4.0”
before, but returns “3.4.1” in PyOtherSide after and including 1.5.0).

QML PyGLArea Element

New in version 1.5.0.

The PyGLArea allows rendering arbitrary OpenGL content from Python into
the QML scene.

Properties

	
PyObject renderer

	Python object that implements the IRenderer interface, see
OpenGL rendering in Python for details.

	
bool before

	true to render before (= below) the rest of the QML scene,
false to render after (= above) the rest of the QML scene.
Default: true

QML PyFBO Element

New in version 1.5.0.

The PyFBO allows offscreen rendering of arbitrary OpenGL content from
Python into the QML scene.

Properties

	
PyObject renderer

	Python object that implements the IRenderer interface, see
OpenGL rendering in Python for details

Python API

PyOtherSide uses a normal Python 3.x interpreter for running your Python code.

The pyotherside module

When a module is imported in PyOtherSide, it will have access to a special
module called pyotherside in addition to all Python Standard Library modules
and Python modules in sys.path:

import pyotherside

The module can be used to send events asynchronously (even from different threads)
to the QML layer, register a callback for doing clean-ups at application exit and
integrate with other QML-specific features of PyOtherSide.

Methods

	
pyotherside.send(event, *args)

	Send an asynchronous event with name event with optional arguments
args to QML.

	
pyotherside.atexit(callback)

	Register a callback to be called when the application is closing.

	
pyotherside.set_image_provider(provider)

	Set the QML image provider (image://python/).

New in version 1.1.0.

	
pyotherside.qrc_is_file(filename)

	Check if filename is an existing file in the Qt Resource System [http://qt-project.org/doc/qt-5/resources.html].

	Returns

	True if filename is a file, False otherwise.

New in version 1.3.0.

	
pyotherside.qrc_is_dir(dirname)

	Check if dirname is an existing directory in the Qt Resource System [http://qt-project.org/doc/qt-5/resources.html].

	Returns

	True if dirname is a directory, False otherwise.

New in version 1.3.0.

	
pyotherside.qrc_get_file_contents(filename)

	Get the file contents of a file in the Qt Resource System [http://qt-project.org/doc/qt-5/resources.html].

	Raises

	ValueError – If filename does not denote a valid file.

	Returns

	The file contents as Python bytearray object.

New in version 1.3.0.

	
pyotherside.qrc_list_dir(dirname)

	Get the entry list of a directory in the Qt Resource System [http://qt-project.org/doc/qt-5/resources.html].

	Raises

	ValueError – If dirname does not denote a valid directory.

	Returns

	The directory entries as list of strings.

New in version 1.3.0.

Constants

New in version 1.1.0.

These constants are used in the return value of a image provider function:

	pyotherside.format_mono

	Mono pixel format (QImage::Format_Mono).

	pyotherside.format_mono_lsb

	Mono pixel format, LSB alignment (QImage::Format_MonoLSB).

	pyotherside.format_rgb32

	32-bit RGB format (QImage::Format_RGB32).

	pyotherside.format_argb32

	32-bit ARGB format (QImage::Format_ARGB32).

	pyotherside.format_rgb16

	16-bit RGB format (QImage::Format_RGB16).

	pyotherside.format_rgb666

	18bpp RGB666 format (QImage::Format_RGB666).

	pyotherside.format_rgb555

	15bpp RGB555 format (QImage::Format_RGB555).

	pyotherside.format_rgb888

	24-bit RGB format (QImage::Format_RGB888).

	pyotherside.format_rgb444

	12bpp RGB format (QImage::Format_RGB444).

	pyotherside.format_data

	Encoded image file data (e.g. PNG/JPEG data).

New in version 1.3.0.

The following constants have been added in PyOtherSide 1.3:

	pyotherside.version

	Version of PyOtherSide as string.

New in version 1.5.0.

The following constants have been added in PyOtherSide 1.5:

	pyotherside.format_svg_data

	SVG image XML data

Data Type Mapping

PyOtherSide will automatically convert Python data types to Qt data types
(which in turn will be converted to QML data types by the QML engine).
The following data types are supported and can be used to pass data
between Python and QML (and vice versa):

	Python

	QML

	Remarks

	bool

	bool

	

	int

	int

	

	float

	double

	

	str

	string

	

	list

	JS Array

	JS Arrays are always
converted to Python lists.

	tuple

	JS Array

	

	dict

	JS Object

	Keys must be strings

	datetime.date

	QML date

	since PyOtherSide 1.2.0

	datetime.time

	QML time

	since PyOtherSide 1.2.0

	datetime.datetime

	JS Date

	since PyOtherSide 1.2.0

	set

	JS Array

	since PyOtherSide 1.3.0

	iterable

	JS Array

	since PyOtherSide 1.3.0

	object

	(opaque)

	since PyOtherSide 1.4.0

	pyotherside.QObject

	QObject

	since PyOtherSide 1.4.0

	bytes

	JS ArrayBuffer

	since PyOtherSide 1.5.6;
requires Qt 5.8; the C++
data type is QByteArray

Trying to pass in other types than the ones listed here is undefined
behavior and will usually result in an error.

Image Provider

New in version 1.1.0.

A QML Image Provider can be registered from Python to load image
data (e.g. map tiles, diagrams, graphs or generated images) in
QML Image elements without resorting to saving/loading files.

An image provider has the following argument list and return values:

def image_provider(image_id, requested_size):
 ...
 return bytearray(pixels), (width, height), format

The parameters to the image provider functions are:

	image_id

	The ID of the image URL (image://python/<image_id>).

	requested_size

	The source size of the QML Image as tuple: (width, height).
(-1, -1) if the source size is not set.

The image provider must return a tuple (data, size, format):

	data

	A bytearray object containing the pixel data for the
given size and the given format.

	size

	A tuple (width, height) describing the size of the
pixel data in pixels.

	format

	The pixel format of data (see constants),
pyotherside.format_data if data contains an
encoded (PNG/JPEG) image instead of raw pixel data
or pyotherside.format_svg_data if data contains
SVG image XML data.

In order to register the image provider with PyOtherSide for use
as provider for image://python/ URLs, the image provider function
needs to be passed to PyOtherSide:

import pyotherside

def image_provider(image_id, requested_size):
 ...

pyotherside.set_image_provider(image_provider)

Because Python modules are usually imported asynchronously, the image
provider will only be registered once the module registering the image
provider is successfully imported. You have to make sure that setting
the source property on a QML Image element only happens after
the image provider has been set (e.g. by setting the source property
in the callback function passed to importModule()).

Qt Resource Access

New in version 1.3.0.

If you are using PyOtherSide in combination with an application binary compiled
from C++ code with Qt Resources (see Qt Resource System [http://qt-project.org/doc/qt-5/resources.html]), you can inspect
and access the resources from Python. This example demonstrates the API by
walking the whole resource tree, printing out directory names and file sizes:

import pyotherside
import os.path

def walk(root):
 for entry in pyotherside.qrc_list_dir(root):
 name = os.path.join(root, entry)
 if pyotherside.qrc_is_dir(name):
 print('Directory:', name)
 walk(name)
 else:
 data = pyotherside.qrc_get_file_contents(name)
 print('File:', name, 'has', len(data), 'bytes')

walk('/')

Importing Python modules from Qt Resources also works starting with QML API 1.3
using Qt.resolvedUrl() from within a QML file in Qt Resources. As an
alternative, addImportPath('qrc:/') will add the root directory of the Qt
Resources to Python’s module search path.

Accessing QObjects from Python

New in version 1.4.0.

Since version 1.4, PyOtherSide allows passing QObjects from QML to Python, and
accessing (setting / getting) properties and calling slots and dynamic methods.
References to QObjects passed to Python can be passed back to QML transparently:

Assume func will be called with a QObject as sole argument
def func(qobject):
 # Getting properties
 print(qobject.x)

 # Setting properties
 qobject.x = 123

 # Calling slots and dynamic functions
 print(qobject.someFunction(123, 'b'))

 # Returning a QObject reference to the caller
 return qobject

It is possible to store a reference (bound method) to a method of a QObject.
Such references cannot be passed to QML, and can only be used in Python for the
lifetime of the QObject. If you need to pass such a bound method to QML, you
can wrap it into a Python object (or even just a lambda) and pass that instead:

def func(qobject):
 # Can store a reference to a bound method
 bound_method = qobject.someFunction

 # Calling the bound method
 bound_method(123, 'b')

 # If you need to return the bound method, you must wrap it
 # in a lambda (or any other Python object), the bound method
 # cannot be returned as-is for now
 return lambda a, b: bound_method(a, b)

It’s not possible to instantiate new QObjects from within Python, and it’s
not possible to subclass QObject from within Python. Also, be aware that a
reference to a QObject in Python will become invalid when the QObject is
deleted (there’s no way for PyOtherSide to prevent referenced QObjects from
being deleted, but PyOtherSide tries hard to detect the deletion of objects
and give meaningful error messages in case the reference is accessed).

Calling signals of QML objects

New in version 1.5.4.

Calling (emitting) signals of QML objects is supported since PyOtherSide 1.5.4.
However, as signals do not have a return value as such, the return value is
either just true or false, depending on whether the call worked or not.

OpenGL rendering in Python

New in version 1.5.0.

You can render directly to a QML application’s OpenGL context in your Python
code (i.e. via PyOpenGL or vispy.gloo) by using a PyGLArea or PyFBO item.

The IRenderer interface that needs to be implemented in Python and set
as the renderer property of PyGLArea or PyFBO needs to provide
the following functions:

	
IRenderer.init()

	Initialize OpenGL resources required for rendering.
This method is optional.

	
IRenderer.reshape(x, y, width, height)

	Called when the geometry has changed.

(x, y) is the position of the bottom left corner of the area, in
window coordinates, e.g. (0, 0) is the bottom left corner of the window.

	
IRenderer.render()

	Render to the OpenGL context.

It is the renderer’s responsibility to unbind any used resources to leave
the context in a clean state.

	
IRenderer.cleanup()

	Free any resources allocated by IRenderer.init().
This method is optional.

See Rendering with PyOpenGL for an example implementation.

Note that you might to use a recent version of PyOpenGL (>= 3.1.0) for some of
the examples to work, earlier versions had problems. If your distribution does
not provide new versions, you can install the most recent version of PyOpenGL
to your $HOME using:

pip3 install --user --upgrade PyOpenGL PyOpenGL_accelerate

Cookbook

This section contains code examples and best practices for combining Python and
QML.

Importing modules and calling functions asynchronously

In this example, we import the Python Standard Library module os
and - when the module is imported - call the os.getcwd() function on it.
The result of the os.getcwd() function is then printed to the console
and os.chdir() is called with a single argument ('/') - again, after
the os.chdir() function has returned, a message will be printed.

In this example, importing modules and calling functions are both done in
an asynchronous way - the QML/GUI thread will not block while these functions
execute. In fact, the Component.onCompleted code block will probably
finish before the os module has been imported in Python.

Python {
 Component.onCompleted: {
 importModule('os', function() {
 call('os.getcwd', [], function (result) {
 console.log('Working directory: ' + result);
 call('os.chdir', ['/'], function (result) {
 console.log('Working directory changed.');
 }););
 });
 });
 }
}

While this continuation-passing style [https://en.wikipedia.org/wiki/Continuation-passing_style] might look a like a little pyramid
due all the nesting and indentation at first, it makes sure your application’s
UI is always responsive. The user will be able to interact with the GUI (e.g.
scroll and move around in the UI) while the Python code can process requests.

To avoid what’s called callback hell [http://callbackhell.com/] in JavaScript, you can pull out the
anonymous functions you give as callbacks, give them names and pass them to
the API functions via name, e.g. the above example would turn into a shallow
structure (of course, in this example, splitting everything out does not make
too much sense, as the functions are very simple to begin with, but it’s here
to demonstrate how splitting a callback hell pyramid basically works):

Python {
 Component.onCompleted: {
 function changedCwd(result) {
 console.log('Working directory changed.');
 }

 function gotCwd(result) {
 console.log('Working directory: ' + result);
 call('os.chdir', ['/'], changedCwd);
 }

 function withOs() {
 call('os.getcwd', [], gotCwd);
 }

 importModule('os', withOs);
 }
}

Evaluating Python expressions in QML

The evaluate() method on the Python object can be used to evaluate a
simple Python expression and return its result as JavaScript object:

Python {
 Component.onCompleted: {
 console.log('Squares: ' + evaluate('[x for x in range(10)]'));
 }
}

Evaluating expressions is done synchronously, so make sure you only use it for
expressions that are not long-running calculations / operations.

Error handling in QML

If an error happens in Python while calling functions, the traceback of the
error (or an error message in case the error happens in the PyOtherSide layer)
will be sent with the error() signal of the Python element. During early
development, it’s probably enough to just log the error to the console:

Python {
 // ...

 onError: console.log('Error: ' + traceback)
}

Once your application grows, it might make sense to maybe show the error to the
user in a dialog box, message or notification in addition to or instead of using
console.log() to print the error.

Handling asynchronous events from Python in QML

Your Python code can send asynchronous events with optional data to the QML
layer using the pyotherside.send() function. You can call this function from
functions called from QML, but also from anywhere else - including threads that
you created in Python. The first parameter is mandatory, and must be a string
that identifies the event. Additional parameters are optional and can be of any
data type that PyOtherSide supports:

import pyotherside

pyotherside.send('new-entries', 100, 123)

If you do not add a special handler on the Python object, such events would
be handled by the received() signal handler in QML - its data parameter
contains the event name and all arguments in a list:

Python {
 // ..

 onReceived: console.log('Event: ' + data)
}

Usually, you want to install a handler for such events. If you have e.g. the
'new-entries' event like shown above (with two numeric parameters that we
will call first and last for this example), you might want to define a
simple handler function that will process this event:

Python {
 // ..

 Component.onCompleted: {
 setHandler('new-entries', function (first, last) {
 console.log('New entries from ' + first + ' to ' + last);
 });
 }
}

Once a handler for a given event is defined, the received() signal will not
be emitted anymore. If you need to unset a handler for a given event, you can
use setHandler('event', undefined) to do so.

In some cases, it might be useful to not install a handler function directly, but
turn the pyotherside.send() call into a new signal on the Python object.
As there is no easy way for PyOtherSide to determine the names of the arguments
of the event, you have to define and hook up these signals manually. The upside
of having to define the signals this way is that all signals will be nicely
documented in your QML file for future reference:

Python {
 signal updated()
 signal newEntries(int first, int last)
 signal entryRenamed(int index, string name)

 Component.onCompleted: {
 setHandler('updated', updated);
 setHandler('new-entries', newEntries);
 setHandler('entry-renamed', entryRenamed);
 }
}

With this setup, you can now emit these signals from the Python object by
using pyotherside.send() in your Python code:

pyotherside.send('updated')
pyotherside.send('new-entries', 20, 30)
pyotherside.send('entry-renamed', 11, 'Hello World')

Loading ListModel data from Python

Most of the time a PyOtherSide QML application will display some data stored
somewhere and retrieved or generated with Python. The easiest way to do this is
to return a list-of-dicts in your Python function:

listmodel.py

def get_data():
 return [
 {'name': 'Alpha', 'team': 'red'},
 {'name': 'Beta', 'team': 'blue'},
 {'name': 'Gamma', 'team': 'green'},
 {'name': 'Delta', 'team': 'yellow'},
 {'name': 'Epsilon', 'team': 'orange'},
]

Of course, the function could do other things (such as doing web requests, querying
databases, etc..) - as long as it returns a list-of-dicts, it will be fine (if you
are using a generator that yields dicts, just wrap the generator with list()).
Using this function from QML is straightforward:

listmodel.qml

import QtQuick 2.0
import io.thp.pyotherside 1.5

Rectangle {
 color: 'black'
 width: 400
 height: 400

 ListView {
 anchors.fill: parent

 model: ListModel {
 id: listModel
 }

 delegate: Text {
 // Both "name" and "team" are taken from the model
 text: name
 color: team
 }
 }

 Python {
 id: py

 Component.onCompleted: {
 // Add the directory of this .qml file to the search path
 addImportPath(Qt.resolvedUrl('.'));

 // Import the main module and load the data
 importModule('listmodel', function () {
 py.call('listmodel.get_data', [], function(result) {
 // Load the received data into the list model
 for (var i=0; i<result.length; i++) {
 listModel.append(result[i]);
 }
 });
 });
 }
 }
}

Instead of passing a list-of-dicts, it is of course also possible to send
new list items via pyotherside.send(), one item at a time, and append
them to the list model that way.

Rendering RGBA image data in Python

New in version 1.1.0.

[image: _images/image_provider_example.png]
This example uses the image provider feature of PyOtherSide to
render RGB image data in Python and display the rendered data in
QML using a normal QtQuick 2.0 Image element:

imageprovider.py

import pyotherside
import math

def render(image_id, requested_size):
 print('image_id: "{image_id}", size: {requested_size}'.format(**locals()))

 # width and height will be -1 if not set in QML
 if requested_size == (-1, -1):
 requested_size = (300, 300)

 width, height = requested_size

 # center for circle
 cx, cy = width/2, 10

 pixels = []
 for y in range(height):
 for x in range(width):
 pixels.extend(reversed([
 255, # alpha
 int(10 + 10 * ((x - y * 0.5) % 20)), # red
 20 + 10 * (y % 20), # green
 int(255 * abs(math.sin(0.3*math.sqrt((cx-x)**2 + (cy-y)**2)))) # blue
]))
 return bytearray(pixels), (width, height), pyotherside.format_argb32

pyotherside.set_image_provider(render)

This module can now be imported in QML and used as source in the QML
Image element:

imageprovider.qml

import QtQuick 2.0
import io.thp.pyotherside 1.5

Image {
 id: image
 width: 300
 height: 300

 Python {
 Component.onCompleted: {
 // Add the directory of this .qml file to the search path
 addImportPath(Qt.resolvedUrl('.'));

 importModule('imageprovider', function () {
 image.source = 'image://python/image-id-passed-from-qml';
 });
 }

 onError: console.log('Python error: ' + traceback)
 }
}

Rendering with PyOpenGL

New in version 1.5.0.

[image: _images/pyfbo_example.png]
The example below shows how to do raw OpenGL rendering in PyOpenGL using
PyGLArea. It has been adapted from the tutorial in the Qt documentation at
http://qt-project.org/doc/qt-5/qtquick-scenegraph-openglunderqml-example.html.

renderer.py

import numpy

from OpenGL.GL import *
from OpenGL.GL.shaders import compileShader, compileProgram

VERTEX_SHADER = """#version 130
attribute highp vec4 vertices;
varying highp vec2 coords;

void main() {
 gl_Position = vertices;
 coords = vertices.xy;
}
"""

FRAGMENT_SHADER = """#version 130
uniform lowp float t;
varying highp vec2 coords;
void main() {
 lowp float i = 1. - (pow(abs(coords.x), 4.) + pow(abs(coords.y), 4.));
 i = smoothstep(t - 0.8, t + 0.8, i);
 i = floor(i * 20.) / 20.;
 gl_FragColor = vec4(coords * .5 + .5, i, i);
}
"""

class Renderer(object):

 def __init__(self):
 self.t = 0.0
 self.values = numpy.array([
 -1.0, -1.0,
 1.0, -1.0,
 -1.0, 1.0,
 1.0, 1.0
], dtype=numpy.float32)

 def set_t(self, t):
 self.t = t

 def init(self):
 self.vertexbuffer = glGenBuffers(1)
 vertex_shader = compileShader(VERTEX_SHADER, GL_VERTEX_SHADER)
 fragment_shader = compileShader(FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
 self.program = compileProgram(vertex_shader, fragment_shader)
 self.vertices_attr = glGetAttribLocation(self.program, b'vertices')
 self.t_attr = glGetUniformLocation(self.program, b't')

 def reshape(self, x, y, width, height):
 glViewport(x, y, width, height)

 def render(self):
 glUseProgram(self.program)
 try:
 glDisable(GL_DEPTH_TEST)
 glClearColor(0, 0, 0, 1)
 glClear(GL_COLOR_BUFFER_BIT)
 glEnable(GL_BLEND)
 glBlendFunc(GL_SRC_ALPHA, GL_ONE)

 glBindBuffer(GL_ARRAY_BUFFER, self.vertexbuffer)
 glEnableVertexAttribArray(self.vertices_attr)
 glBufferData(GL_ARRAY_BUFFER, self.values, GL_STATIC_DRAW)
 glVertexAttribPointer(self.vertices_attr, 2, GL_FLOAT, GL_FALSE, 0, None)
 glUniform1f(self.t_attr, self.t)

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4)
 finally:
 glDisableVertexAttribArray(0)
 glBindBuffer(GL_ARRAY_BUFFER, 0)
 glUseProgram(0)

 def cleanup(self):
 glDeleteProgram(self.program)
 glDeleteBuffers(1, [self.vertexbuffer])

pyglarea.qml

import QtQuick 2.0
import io.thp.pyotherside 1.5

Item {
 width: 320
 height: 480

 PyGLArea {
 id: glArea
 anchors.fill: parent
 property var t: 0

 SequentialAnimation on t {
 NumberAnimation { to: 1; duration: 2500; easing.type: Easing.InQuad }
 NumberAnimation { to: 0; duration: 2500; easing.type: Easing.OutQuad }
 loops: Animation.Infinite
 running: true
 }

 onTChanged: {
 if (renderer) {
 py.call(py.getattr(renderer, 'set_t'), [t], update);
 }
 }
 }

 Rectangle {
 color: Qt.rgba(1, 1, 1, 0.7)
 radius: 10
 border.width: 1
 border.color: "white"
 anchors.fill: label
 anchors.margins: -10
 }

 Text {
 id: label
 color: "black"
 wrapMode: Text.WordWrap
 text: "The background here is a squircle rendered with raw OpenGL using a PyGLArea. This text label and its border is rendered using QML"
 anchors.right: parent.right
 anchors.left: parent.left
 anchors.bottom: parent.bottom
 anchors.margins: 20
 }

 Python {
 id: py

 Component.onCompleted: {
 addImportPath(Qt.resolvedUrl('.'));
 importModule('renderer', function () {
 call('renderer', [], function (renderer) {
 glArea.renderer = renderer;
 });
 });
 }

 onError: console.log(traceback);
 }
}

Building PyOtherSide

The following build requirements have to be satisfied to build PyOtherSide:

	Qt 5.1.0 or newer (Qt 6.x also supported)

	Python 3.3.0 or newer

If you have the required build-dependencies installed, building and installing
the PyOtherSide plugin should be as simple as:

qmake # for Qt 6, use "qmake6"
make
make install

In case your system doesn’t provide python3-config, you might have to
pass a suitable python-config to qmake at configure time:

qmake PYTHON_CONFIG=python3.3-config # For Qt 6, use "qmake6"
make
make install

Alternatively, you can edit python.pri manually and specify the compiler
flags for compiling and linking against Python on your system.

ChangeLog

Version 1.6.0 (2022-08-05)

	Support for Qt 6 (Qt 5 is still supported for now)

	Use PyUnicode_AsUTF8 from Python 3.3 when converting strings; strings returned
from the converter are now valid as long as the PyObject is alive (previously
they were valid until the next string conversion or until converter was destroyed)

	Fixed image_loader and imageprovider_svg_data examples

	Removed outdated build instructions for Android and Windows

Version 1.5.9 (2020-01-17)

	Fix compilation on Windows with VS 2017 by avoiding VLAs (by Igor Malinovskiy, PR#106)

	Ensure the Python GIL is obtained in unit tests, fixes Python 3.9-related crashes (fixes #111)

Version 1.5.8 (2019-06-16)

	Really fix Python 3.8 build compatibility (fix by Dan Church, PR#105)

Version 1.5.7 (2019-06-06)

	Fix Python 3.8 build compatibility by adding --embed to python-config (with fallback for previous versions)

Version 1.5.6 (2019-06-06)

	Add support for QByteArray, JS ArrayBuffer and Python bytes conversion (by Igor Malinovskiy, PR#103)

Version 1.5.5 (2019-06-04)

	Include dlfcn.h to fix build errors against musl libc (by Heiko Becker, PR#100)

	Add --libs to python3-config command line (due to Python Issue 21536 changes; fixes #102)

Version 1.5.4 (2019-01-27)

	Initialize sys.argv in Python for libraries that depend on it (issue #77)

	Update plugins.qmltypes and cleanup project files (by martyone, PR#95)

	Allow calling signals on QML objects from Python (issue #98)

Version 1.5.3 (2017-10-14)

	Fix refcounting/ownership issue when using the QRC importer module (issue #84)

Version 1.5.2 (2017-10-14)

	Fix Python-to-Qt conversion for integers > 32 bits on platforms where sizeof(long) is 4 bytes (issue #86)

Version 1.5.1 (2017-03-17)

	Fix call_sync() when used with parameters (fix by Robie Basak; issue #49)

Version 1.5.0 (2016-06-14)

	Support for OpenGL rendering in Python using PyOpenGL >= 3.1.0

	New QML components: PyGLArea, PyFBO

	pythonVersion() now returns the runtime Python version

	Add the library to PYTHONPATH for standard library appended as .zip (except on Windows)

	Call PyDateTime_IMPORT as often as necessary (Fixes #46)

	Added pyotherside.format_svg_data for using SVG data in the image provider

	Handle converting QVariantHash to Python dict type

	Added .qmltypes file to provide metadata information for Qt Creator

	New functions importNames() and importNames_sync() for from-imports

Version 1.4.0 (2015-02-19)

	Support for passing Python objects to QML and keeping references there

	Add getattr() to get an attribute from a Python object

	call() and call_sync() now also accept a Python callable as
first argument

	Support for Accessing QObjects from Python (properties and slots)

	Print error messages to the console if error() doesn’t have any
handlers connected

Version 1.3.0 (2014-07-24)

	Access to the Qt Resource System [http://qt-project.org/doc/qt-5/resources.html] from Python (see Qt Resource Access).

	QML API 1.3: Import from Qt Resources (addImportPath() with qrc:/).

	Add pyotherside.version constant to access version from Python as string.

	Support for building on Windows, build instructions for Windows builds.

	New data type conversions: Python set and iterable types (e.g. generator
expressions and generators) are converted to JS Array.

Version 1.2.0 (2014-02-16)

	Introduced versioned QML imports for API change.

	QML API 1.2: Change importModule() behavior for imports with dots.

	QML API 1.2: Emit error() when JavaScript callbacks passed to
importModule() and call() throw an exception.

	New data type conversions: Python datetime.date, datetime.time
and datetime.datetime are converted to QML date, time and
JS Date types, respectively.

Version 1.1.0 (2014-02-06)

	Add support for Python-based image providers (see Image Provider).

	Fix threading crashes and aborts due to assertions.

	addImportPath() will automatically strip a leading file://.

	Added pluginVersion() and pythonVersion() for runtime version detection.

Version 1.0.0 (2013-08-08)

	Initial QML plugin release.

Version 0.0.1 (2013-05-17)

	Proof-of-concept (based on a prototype from May 2011).

Index

 A
 | C
 | E
 | G
 | I
 | P
 | R
 | S

A

 	
 	addImportPath() (built-in function)

C

 	
 	call() (built-in function)

 	
 	call_sync() (built-in function)

E

 	
 	error() (built-in function)

 	
 	evaluate() (built-in function)

G

 	
 	getattr() (built-in function)

I

 	
 	importModule() (built-in function)

 	importModule_sync() (built-in function)

 	importNames() (built-in function)

 	importNames_sync() (built-in function)

 	
 	IRenderer.cleanup() (built-in function)

 	IRenderer.init() (built-in function)

 	IRenderer.render() (built-in function)

 	IRenderer.reshape() (built-in function)

P

 	
 	pluginVersion() (built-in function)

 	pyotherside.atexit() (built-in function)

 	pyotherside.qrc_get_file_contents() (built-in function)

 	pyotherside.qrc_is_dir() (built-in function)

 	
 	pyotherside.qrc_is_file() (built-in function)

 	pyotherside.qrc_list_dir() (built-in function)

 	pyotherside.send() (built-in function)

 	pyotherside.set_image_provider() (built-in function)

 	pythonVersion() (built-in function)

R

 	
 	received() (built-in function)

S

 	
 	setHandler() (built-in function)

 nav.xhtml

 Table of Contents

 		
 PyOtherSide Developer Guide

_images/pyfbo_example.png
The squircle is an FBO, rendered by the
application on the scene graph rendering thread.

The FBO is managed and displayed using a PYFBO
item.

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_images/image_provider_example.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

